Turn off your cell phone. The use of any type of calculator or graphing utility is Answer the following questions. prohibited.

1. Let
$$f(x) = \int_{0}^{x} \frac{1}{t} e^{-t} dt$$
, $x > 0$.

(a) Show that f is one-to-one on its domain.

(2 points)

(b) Explain why the point P(0,2) is on the graph of f^{-1} .

(1 point)

(c) Find the slope of the tangent line to the graph of f^{-1} at P(0,2).

(2 points)

2. (a) Prove the identity

(3 points)

$$2 \tan^{-1} e^x - \tan^{-1} (\sinh x) = \frac{\pi}{2}, \quad -\infty < x < \infty.$$

(b) Find the limit $\lim_{x\to 0} \left[\exp(\frac{1}{x^2})\right]^{(\cosh x-1)}$ if it exists.

(4 points)

Evaluate the following integrals.

(4 points each)

(a)
$$\int \frac{e^{-2x^{-2}}}{x^5} dx$$
 (b) $\int \frac{\cot x}{4\sin^2 x - 1} dx$.

- 4. Find the value of the improper integral $\int_1^\infty \frac{1}{x\sqrt{x^2+4}} dx$ if convergent. (4 points)
- 5. Find the centroid of the region R, which is bounded by the curve $y = (x+1)^{2007}$, the x-axis and the lines x = -1 and x = 0.
- 6. Let C be the parametric curve

$$x = \cos^3 t, \qquad y = \sin^3 t, \qquad 0 \le t \le \frac{\pi}{2}.$$

(a) Find the point on C where the tangent line is parallel to the line $y = -\sqrt{3}x$.

(4 points)

(b) Find the length of C.

(4 points)

7. Find the area of the region which lies inside the circle $r=\frac{1}{2}$ and outside the cardioid $r=1-\cos\theta$. (4 points)